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Abstract. Third harmonic loads on a vertical cylinder in irregular or regular longcrested waves in deep water
are analyzed. Characteristic wave lengths are large relative to the cross-dimensions of the cylinder. Characteristic
wave amplitudes are of the same order as the cylinder cross-dimensions. The method is a generalization of the FNV
method (Faltinsen, Newman and Vinje [1]) for a circular cross-section. Integral theorems and auxiliary potentials
are used to simplify the force expressions. Details are shown for Lewis form sections. Completely analytical
expressions are derived for elliptical cross-sections. It is demonstrated that the third harmonic loads are sensitive
to the cross-sectional form.
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1. Introduction

Ringing is of concern in survival conditions for gravity-based structures (GBS) and tension-
leg platforms (TLP) in deep water. Ringing is caused by extreme waves exciting transient
resonance response of structural modes. The relevant resonance periods are significantly lower
than the peak periodTp of the wave spectrum. The interesting natural periods for a TLP and
GBS are about one fourth and one third ofTp, respectively. This means that third and fourth
harmonic load terms are needed in the analysis.

A TLP is restrained from oscillating vertically by tethers, which are vertical anchorlines
that are tensioned by the platform buoyancy being larger than the platform. The submerged
part of the platform may consist of four vertical columns penetrating the free surface. Horizon-
tal pontoons connect the columns at the lower end of the column. The draught of the platform
may be around 40 m. The cross-sections of the columns of a TLP are normally circular. The
diameterD may be from 20 to 30 m. The Draugen monotower is an example of a GBS. It
has non-circular cross-sections that vary along the cylinder axis. It is installed on 252·5 water
depth. The smallest cross-dimension of the tower is 15 m and close to the free surface. The
ringing analysis has to be performed in an irregular sea. A typical wave period and maximum
wave amplitudeA for survival conditions in the North Sea could be 15 m and 15 s. The wave
numberK for linear harmonic plane waves with period 15 s is 0·01789 m−1. It means that
representative values ofKD andA/D are 0·35 and 0·75 withD = 20 m.

Basic studies on ringing loads on a fixed vertical and infinitely long circular cylinder in
deep water incident waves were reported by Faltinsen, Newman and Vinje [1] (FNV) and by
Newman [2]. FNV assumed regular incident waves and Newman considered irregular waves.
Their procedure will be generalized to a monotower with non-circular cross-sections varying
along the cylinder axis. The cross-section has two symmetry axes. The waves are longcrested
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200 O. M. Faltinsen

and propagating along one of the symmetry axes. The incident waves are characterized by a
wave amplitudeA of the same order of magnitude as a characteristic cross-dimensional length
a of the structure. Botha andA areO(ε), whereε � 1. The characteristic wave length is
O(1). The presented theory includes load terms ofO(A3). First, second and third harmonic
load terms are included. The theory can be generalized to other wave headings, cross-sections
without symmetry planes and a multicolumn GBS. The effect of body motion can be included.
Generalization of the method for a TLP needs further study. The effects of junctions between
columns and pontoons, heave forces and roll and pitch moments should be evaluated. Both
wave frequency and slowdrift motions of a TLP need to be included. The present theory gives
fourth-order harmonic terms in roll and pitch moments about an axis close to the mean free
surface. The reason is that the third harmonic loads act in the free surface zone with a center
of action that follows the incident wave elevation in time. But all fourth-order harmonic terms
are not consistently included in the analysis.

Rainey [3] has analysed a similar case that we study. An important difference in the present
analysis is a nonlinear scattering potentialψ arising from the free-surface conditions. If we
disregard the effect ofψ , then there is a difference in how Rainey and we derive the loads.
Our formulas are derived by direct pressure integration and use of integral theorems. Rainey
uses conservation of momentum and energy in the fluid.

The solution ofψ implies satisfaction of an inhomogeneous free-surface condition, three-
dimensional Laplace equation and a homogeneous body-boundary condition for the normal
derivative ofψ . The free-surface condition is satisfied on a horizontal plane following the
linear incident wave elevationζI1 at the cylinder axis. FNV solved this problem by Weber
transform for a circular cylinder. High numerical accuracy is needed if a direct numerical
method is used. This is demonstrated by Zhu [4] for a circular cylinder. The problem of solving
for ψ is avoided in this paper. Integral theorems are instead used to rewrite the forces due to
ψ . This simplifies the analysis. Details are shown for cross-sections that can be described by
Lewis-form technique and conformal mapping. Completely analytical expressions are derived
for elliptical cross-sections. Numerical results are presented and show that the third-harmonic
loads are sensitive to the cross-sectional form.

Malenica and Molin [5] have presented a theory for third-harmonic loads on a vertical
circular cylinder in incident regular waves. It is valid for any wave length relative to the
cylinder radius and based on a conventional perturbation scheme of the free-surface conditions
about the mean water level. Third-order terms are included. They discard the steady second-
order potential and the third-order potential oscillating with the frequencyω of the linear
loads. The second-order potential oscillating with 2ω and the third-order potential oscillating
with 3ω are consistently included according to their perturbation analysis.

Since the nonlinear scattering potentialψ varies rapidly in the vertical direction over dis-
tances on the scale of the incident wave amplitude, it is not possible in our analysis to use a
conventional perturbation of the free-surface conditions about the mean water level. The free-
surface condition forψ is satisfied on a horizontal plane followingζI1. Since the assumptions
in the presented theory and the theory by Malenica and Molin [5] are different, they need not
give the same results. However, Malenica and Molin demonstrated that their results agreed
with FNV for very long wave lengths relative to the cylinder radius. The amplitude of the
third-harmonic loads, but not the phases, agrees reasonably in the wave-length domain of
interest for ringing analysis of a GBS or a TLP.

Experiments have revealed the existence of highly nonlinear local flow phenomena close to
a vertical circular cylinder when the column is being ‘hit’ by a large and steep wave. The wave
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Figure 1. Description of vertical cylinder and coordinate system. Incident linear wave system is illustrated.

length is large relative to the diameter and the wave amplitude is of the order of the cylinder
radius. The nonlinear flow near the column may be characterized as a so called ‘hydraulic
jump’ starting on the upstream side of the column at the time instant when there is a wave
trough at the column axes. A hydraulic jump is propagating on each side of the column and
collide on the downstream side. The consequence of the collision between the two hydraulic
jumps is a strong vertical jet flow (run-up) which can hit the platform deck. The phenomenon
is most pronounced in regular incident waves. The time between the formation and collision
of the hydraulic jumps is half the wave period. There are no pronounced ‘hydraulic jumps’
propagating upstream in the half-wave period after the collision. The present theory does not
predict phenomena like this. It is of both academic and practical interest to study this problem
in the future.

The paper is organized as follows. The theory for a general cross-section is first presented.
Details are then shown for Lewis forms and elliptic sections. The following chapter on nu-
merical results gives the complete third-harmonic horizontal load expressions for a vertical
cylinder with either a Lewis-form section or an elliptic section.

2. Theory

Cartesian coordinates(x, y, z) are defined withz = 0 in the mean water level (see Figure 1).
Positivez is upwards. Thex-y planes andy-z planes are symmetry planes for the cross-section
of the monotower. The surface normal vectorEn = (n1, n2, n3) is positive into the fluid domain.
Incident longcrested irregular or regular waves propagating along thex-axis are studied. The
characteristic wave amplitudeA and structural cross-dimensiona areO(ε), whereε � 1.
The characteristic wave length isO(1). The cylinder (monotower) is slender and fixed. The
cross-sectional shape can vary slowly along the cylinder length so thatn3 = O(ε). Potential
flow is assumed. The total velocity potential is written asφ = φI + φS + ψ , whereφI is the
incident wave potential.φs is the first-order scattered potential andψ represents higher-order
nonlinear scattering. The exact boundary-value problem is thatφ satisfies a three-dimensional
Laplace equation, the body boundary condition∂φ/∂n = 0 and the free-surface condition

φtt + gφz = −2∇φ · ∇φt − 1
2∇φ · ∇(∇φ)2, on z = ζ (1)
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outside the body. Hereg is the acceleration of gravity,t is the time variable andζ is the water
elevation. Initial conditions are needed with this formulation of the free-surface condition.
The boundary-value problem will be simplified similar as FNV did. Deep water is assumed.
The linear incident-wave system is described by a superposition of plane harmonic waves. If
harmonic incident waves of frequencyω and wave numberK are considered, then the linear
waves are correct to order(KA)3 if the dispersion relation is written asω2/g = K(1+(KA)2),
(cf. Newman [6, Eq. (6.39)]). In irregular sea there is a second-order velocity potential that
oscillates with difference frequenciesωi − ωj , for any pair of frequenciesωi andωj of the
spectral components of the linear wave system (cf. Faltinsen [7, pp. 169]). It follows then from
the free-surface conditions that the third-order terms in the incident wave system will have no
sum-frequency componentsωi +ωj +ωk, whereωi, ωj andωk are three spectral components
of the linear wave system (Newman [2]).

The functionφS can be found by slender-body theory and matched asymptotic expansions.
We can writeφD = φI + φS to first order inA as

φD = φI0+ u(x + φ11)+ ux(1
2x

2+ φ21)+ wφ25+ f (z, t)+O(ε4) (2)

in the near field of the cylinder. HereφI0, u, ux,w are functions ofz and timet and the values
of φI , ∂φI/∂x, ∂2φI/∂x

2, ∂φI/∂z at x = 0, y = 0. The incident-wave potential has been
expanded in a Taylor series aboutx = 0, y = 0 in Equation (2).φ11, φ21 andφ25 satisfy a 2-D
Laplace equation in the cross-sectional plane and the body-boundary conditions.

∂φ11

∂N
= −n1,

∂φ21

∂N
= −xn1,

∂φ25

∂N
= −n3. (3)

Here EN = (n1, n2). φ11 has a 2-D dipole behavior far away from the cylinder and matches
with a far-field 3-D horizontal dipole distribution along the cylinder axis;φ25 and part ofφ21

have a far-field source-like behavior;f (z, t) is a consequence of matching with a far-field
3-D source distribution along the cylinder axis. This matching is similar as for a slender body
in infinite fluid (cf. Newman [6], Ch. 7). It follows from the boundary-value problem that
φ11 = O(ε), φ21 = O(ε2), φ25 = O(ε2), f (z, t) = O(ε3). It is shown later in the text that the
three-dimensional hydrodynamic interaction potentialf (z, t) does not cause any horizontal
forces toO(ε5).

Further,ψ is a consequence of thatφs does not satisfy the free-surface condition to correct
order of magnitude. As noted in the introduction, the variation ofψ along the cylinder length
is the same order of magnitude as the variation inx and y. Soψ satisfies a 3-D Laplace
equation. The principal free-surface condition for the nonlinear potential is

ψtt + gψz = −2∇φ · ∇φt − 1
2∇φ · ∇(∇φ)2 on z = ζ. (4)

On the right side of Equation (4) the term−(u2 + w2)t is neglected because it is associated
with the nonlinear effects on the incident-wave potential. This term is included in the analysis
of the incident-wave potential. Equation (4) can be approximated. The termψtt is of higher
order thangψz. Due to the strongz-variations ofψ it is essential that the formulation of the
free-surface condition forψ is based on perturbations about the linear incident free-surface
elevations and not aboutz = 0. The free-surface condition is

g
∂ψ

∂z
= −2uut

(
2
∂φ11

∂x
+ (∇φ11)

2

)
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−1
2u

3

(
2
∂2φ11

∂x2
+ 2

∂

∂x
(∇φ11)

2+∇φ11 · ∇(∇φ11)
2

)
(5)

onz = ζI1 (FNV). ζI1 is the linear incident free-surface elevation atx = 0, y = 0. The body-
boundary condition is∂ψ/∂n = 0;ψ will be asymptotically small when(z− ζI1) = O(ε). It
follows from (5) thatψ = O(ε3).

The horizontal loads per unit length due toφI andφs only can be written as

F ′ = ρwAc(z)Du
Dt
+ a11(z)

∂u

∂t
+w ∂

∂z
(ua11(z))+O(ε5) (6)

for a totally wetted cross-section. HereAc(z) = cross-sectional area,ρw = mass density of
the fluid, D/Dt is the substantial derivative and

a11 =
∫
6

φ11n1 ds

is the two-dimensional added mass for translatory motion in thex-direction;6 is the cross-
sectional surface curve. Equation (6) can be found by starting out with Bernoulli’s equation
for the pressurep, i.e.

p/ρw = −gz−
[
∂φI

∂t
+ 1

2|∇φI |2
]
− ∂φs
∂t
− ∂φI
∂x

∂φs

∂x

−1

2

[(
∂φs

∂x

)2

+
(
∂φs

∂y

)2
]
− ∂φI
∂x

∂φs

∂z
− 1

2

(
∂φs

∂z

)2

. (7)

Terms ofO(ε2) will be included in the pressure. The last term can then be neglected. The
hydrostatic pressure term−ρwgz will be analyzed later. The pressure in the incident waves
−ρw[∂φI/∂t + 1

2|∇φI |2] gives the first term in Equation (6). This follows from the diver-
gence theorem applied on the volume inside the body. The second term follows from the
−ρw∂φs/∂t-term and from the fact thatφ21, φ25 andf (z, t) will not contribute to the force.
We can derive the last term by first noting that

1

2

∫
6

n1(∇φs)2 ds =
∫
6

(
∂φs

∂n

)(
∂φs

∂x

)
ds.

This is a consequence of

−
∫
6

En ·
[
∂φs

∂x
∇φs −Ei 1

2

((
∂φs

∂x

)2

+
(
∂φs

∂y

)2
)]

ds

=
∫ ∫

vol
∇ ·

[
∂φs

∂x
∇φs −Ei 12

((
∂φs

∂x

)2

+
(
∂φs

∂y

)2
)]

dτ = 0.

We have here used the divergence theorem on the two-dimensional volume Vol between the
body surface6 and a circular control surface6∞ far away from the body and the facts that
the surface integral over6∞ is zero and that the integrand of the volume integral is zero.
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By using the body boundary conditions we obtain

1
2ρw

∫
n1

((
∂φs

∂x

)2

+
(
∂φs

∂y

)2
)

ds

= ρw
∫
6

∂φs

∂n

∂φs

∂x
ds = −ρw

∫
6

∂φI

∂x

∂φs

∂x
n1ds − ρww

∫
6

∂φs

∂x
n3 ds.

The first term on the right-hand side cancels the force due to the pressure term−ρ(∂φI/∂x)
(∂φs/∂x) in Equation (7). This means that the pressure terms

−ρw ∂φI
∂x

∂φs

∂x
− 1

2ρw

[(
∂φs

∂x

)2

+
(
∂φs

∂y

)2
]
− ρw ∂φI

∂z

∂φs

∂z

in Equation (7) causes the following horizontal force over a segment of dz

ρww

∫ ∫ [
∂

∂z
(uφ11)n1− ∂

∂x
(uφ11)n3

]
dS.

The functionφs is here approximated asuφ11. The next steps are to use Stokes theorem and
divide the force with dz. The result is the last term in Equation (6).

The integration of the total pressure force which acts on the cylinder in thex-direction can
be decomposed into integrations fromz = −∞ to z = 0, from z = 0 to z = ζI1 and from
z = ζI1 to z = ζI1 + ζ2. HereζI1 + ζ2 is the local wave elevation at the cylinder surface
correct toO(ε2). It includes both the effect of the incident waves and the locally scattered free
surface. The contribution by integration of (6) fromz = 0 toz = ζI1 is

F ′ζI1+ 1
2ζ

2
I1

∂2u

∂t∂z
(ρwAc + a11)+O(ε6). (8)

The vertical pressure gradient fromz = ζI1 to z = ζI1 + ζ2 is approximately hydrostatic.
This means the pressurep = −ρg(z− ζ )+O(ε3), whereζ is the free-surface elevation. The
resulting horizontal force correct toO(ε5) is

FHS = −1
2ρwg

∫
61

n1ζ
2
2 ds

= ρwut

∫
61

n1(x + φ11)

[
ζI2− (u2/g)

(
1
2(∇φ11)

2+ ∂φ11

∂x

)]
ds, (9)

where61 is6 atz = ζI1; ζI2 is the second-order part of the incident wave elevation atx = 0,
y = 0. It can be expressed as

ζI2 = −1

g
[12(u2+ w2)− ζI1wt + ∂φ2I0/∂t],

whereφ2I0 is the second-order incident-wave potential atx = 0, y = 0, z = 0.
The horizontal force due toψ can be written as

F (ψ) = ρw
∫ ∫

SB

ψtn1 dS + ρw
∫ ∫

SB

∇φd · ∇ψn1 dS +O(ε6). (10)
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The body surfaceSB extends fromz = −∞ to z = ζI1. Solution ofψ involves satisfaction
of 3-D Laplace equation, the free-surface condition (5) and the body-boundary condition
∂ψ/∂n = 0. This can be done by Weber transform for a circular cross-section (FNV). If
a general cross-section is used, a direct numerical method like a boundary-element method
has to be used. It was demonstrated by Zhu [4] for a circular cross-section that a higher-
order boundary-element method is needed to get sufficient accuracy. However, it is possible
to rewrite Equation (10) so that it is not necessary to solve forψ . The resulting expressions
are much simpler to evaluate. Equation (10) can be rewritten by Green’s second identity. We
introduceφ11 as an auxiliary function together withψ in Green’s second identity. Sinceφ11

satisfies∂φ11/∂n = n1 on SB and∂φ11/∂z = 0 on SF , ψ satisfies∂ψ/∂n = 0 on SB and
there are no contributions from the integrals over a control surface far away from the body, it
follows that∫ ∫

SB

ψtn1 ds =
∫ ∫

SF

φ11ψtz ds.

HereSF is the horizontal plane outside the cross-section atz = ζI1. Equation (5) and symme-
try and antisymmetry properties ofφ11 and its derivatives give

ρw

∫ ∫
SB

ψtn1 dS

= −(3/g)u2utρw

∫ ∫
SF

dS φ11

[
∂2φ11

∂x2
+ ∂

∂x
((∇φ11)

2)+ 1
2∇φ11 · ∇((∇φ11)

2

]
. (11)

We reformulate the expressions by the generalized Gauss theorem so that lower-order deriva-
tives occur. This gives∫ ∫

SF

[
φ11

(
∂2φ11

∂x2

)
+ ∂

∂x
((∇φ11)

2)

]
dS

= −
∫
61

n1φ11

[
∂φ11

∂x
+ (∇φ11)

2

]
ds −

∫ ∫
SF

[(
∂φ11

∂x

)2

+ ∂φ11

∂x
(∇φ11)

2

]
dS

and∫ ∫
SF

φ11∇φ11 · ∇(∇φ11)
2 dS

= −
∫
61

(
n1
∂φ11

∂x
+ n2

∂φ11

∂y

)
φ11(∇φ11)

2 ds

−
∫ ∫

SF

(
∂

∂x

(
φ11

∂φ11

∂x

)
+ ∂

∂y

(
φ11

∂φ11

∂y

))
(∇φ11)

2 dS.

We can simplify this equation by using the body-boundary condition forφ11 in the integrand
of the61-integral and thatφ11 satisfies the two-dimensional Laplace equation in the integrand
of theSF -integral. Equation (11) can then be written

ρw

∫ ∫
SB

ψtn1 ds
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= (3/g)u2utρw

{∮
61

n1φ11

[
∂φ11

∂x
+ 1

2|∇φ11|2
]
ds

+
∫ ∫

SF

[(
∂φ11

∂x

)2

+
(
∂φ11

∂x

)
|∇φ11|2+ 1

2|∇φ1|2|∇φ11|2
]}

dS. (12)

The second part of Equation (10) can be rewritten as∫ ∫
SB

∇φD · ∇ψn1 dS = −u
∫ ∫

SB

ψ
∂

∂s

(
∂

∂s
(x + φ11)

)
dS.

by partial integration. Here∂/∂s is the tangential derivative along the body surface in the
cross-sectional plane. We introduce an auxiliary potentialφa that satisfies 2-D Laplace equa-
tion in x andy and the body-boundary condition

∂φa

∂N
= ∂

∂s

(
n1
∂

∂s
(x + φ11)

)
. (13)

By using

(1) Green’s second identity withψ andφa,
(2) that there are no contributions from the integrals over a control surface far away from the

body,
(3) ψ satisfies∂ψ/∂n = 0 onSB ,
(4) φa satisfies Equation (13),
(5) ∂φa/∂z = 0 onSF ,
(6) the free-surface condition forψ and
(7) symmetry and antisymmetry properties of the integrand,

we may derive

ρw

∫ ∫
SB

∇φD · ∇ψn1 dS = −(2/g)u2utρw

∫ ∫
SF

φa

(
2
∂φ11

∂x
+ |∇φ11|2

)
dS. (14)

F (ψ) can be interpreted as a load moving withz = ζI1(t) and acting close toz = ζI1(t).
Only 2-D potentials are needed in the calculations.

2.1. FORCES EXPRESSED BYLEWIS-FORM TECHNIQUE

It will be shown how to evaluateφ11 and its derivatives, the added massa11, the auxil-
iary potentialφa and the integrals given in Equations (9), (12) and (14). The derivation is
based on conformal mapping and Lewis-form technique. Since analytical expressions can be
extensively used, a good control of numerical accuracy is achieved.

The cross-section is mapped into a circular section of unit radius (see Figure 2). The
complex coordinates in the physical and mapped plane arez andζ , respectively. It is possible
to write (see Figure 2)

z = x + iy = −ir eiβ , (15)

ζ = ξ + iη = −iρ eiθ . (16)
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Figure 2. Mapping of a cross-section into a circular section with unit radius.

Herei is the complex unit. The mapping based on Lewis-form technique can be written

z(ζ ) = a
(
ζ + a1

ζ
+ a3

ζ 3

)
. (17)

It can be shown that

aa1 = 1

2

(
B

2
− D

2

)
,

aa3 = −1

4

(
B

2
+ D

2

)
+ 1

4

√(
B

2
+ D

2

)2

− 8
(
Ac

π
− B

2

D

2

)
,

a = 1

2

(
B

2
+ D

2

)
− aa3,

(18)

whereB is the cross-sectional dimension in thex-direction aty = 0,D is the cross-sectional
length in they-direction atx = 0 and Ac is the cross-sectional area. Lewis-form technique
is used in ship hydrodynamics to describe submerged cross-sections of ships. The limitations
of Lewis-form technique are described by von Kerczek and Tuck [8]. It can be shown that
the minimum sectional area coefficientσ = Ac/BD for a realistic ship section to exist is
3π(2−B/D)/32 forB/D 6 1 and 3π(2−D/B)/32 forB/D > 1. The maximum sectional-
area coefficient isπ(B/D + D/B + 10)/32. The latter value is always larger than 1. Ifσ
is less than the minimum value, then re-entry forms occur. Ifσ is larger than the maximum
value, then sections with double-valued coordinates as a function ofθ occur.

Equation (17) together with Equations (16) and (17) can be written

x = a
[
ρ sinθ + a1

ρ
sinθ − a3

ρ3
sin 3θ

]
,

y = −a
[
ρ cosθ − a1

ρ
cosθ + a3

ρ3
cos 3θ

]
.

(19)

The body-boundary condition forφ11 is

∂φ11

∂n
= −n1 ≡ −∂y

∂s
. (20)
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The stream functionψ11 is introduced. It follows by Cauchy-Riemann’s equations that

ψ11= −y = a(1− a1)cosθ + aa3 cos 3θ (21)

on the body boundary. The solution ofψ11 in the fluid domain is

ψ11= a(1− a1)
cosθ

ρ
+ aa3

cos 3θ

ρ3
. (22)

This ensures that the flow disappears at infinity. The complex potential can then be written

w = φ11+ iψ11 = i
[
a(11− a1)

iζ
+ aa3

(iζ )3

]
. (23)

The two-dimensional added massa11 can be expressed as

a11 = ρw

∫
6

φ11n1 ds

= ρw

∫ 2π

0
[a(1− a1) sinθ + aa3 sin 3θ][a(1− a1) sinθ + 3aa3 sin 3θ]dθ

= ρwπ(a
2(1− a1)

2+ 3(aa3)
2). (24)

We need to evaluate the fluid velocities in Equations (9), (12–14). The complex velocity is

dw

dz
= ∂φ11

∂x
− i ∂φ11

∂y
= dw

dζ

dζ

dz
,

where

dw

dζ
= −

(
a(1− a1)

ζ 2
− 3aa3

ζ 4

)
and

dz

dζ
=
(
a − aa1

ζ 2
− 3aa3

ζ 4

)
.

This means

∂φ11

∂x
= −a

2∣∣∣ dz
dζ

∣∣∣2
{
a1− 1

ρ2
cos 2θ − (1− a1)a1

ρ4

−3a3

ρ4
cos 4θ − 3a3

ρ6
(1− 2a1) cos 2θ + 9a2

3

ρ8

}
, (25)

where∣∣∣∣dzdζ

∣∣∣∣2 = a2

{
1+ a

2
1

ρ4
+ 9a2

3

ρ8
+ 2a1

ρ2
cos 2θ − 6a3

ρ4
cos 4θ − 6a1a3

ρ6
cos 2θ

}
. (26)

Further we can write(
∂φ11

∂x

)2

+
(
∂φ11

∂y

)2

= a2∣∣∣ dz
dζ

∣∣∣2
{
(1− a1)

2

ρ4
+ 6a3(1− a1) cos 2θ

ρ6
+ 9a2

3

ρ8

}
. (27)
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We find the auxiliary potentialφa by first introducing the stream functionψa. The Cauchy-
Riemann equation and Equation (13) give

ψa = n1
∂

∂s
(x + φ11)

on the body boundary. We can express this as

ψa = [(1− a1 + 2a3) sin 2θ + 3a3 sin 4θ]
[1+ a2

1 + 9a2
3 + (2a1 − 6a3a1) cos 2θ − 6a3 cos 4θ] (28)

by using Equations (19–20), (23) and that ds2 = dx2 + dy2.
Equation (28) can be written as the Fourier series

ψa =
∞∑
m=1

b2m sin 2mθ, (29)

where

b2m = 1

π

∫ 2π

0
ψa sin 2mθ dθ. (30)

The solutionψa can then be written

ψa =
∞∑
m=1

b2m

ρ2m
sin 2mθ, (31)

which means that

φa = −
∞∑
m=1

b2m

ρ2m
cos 2mθ. (32)

The solution for a circular cylinder isφa = − cos 2θ/ρ2.
It will now be shown how to evaluate the different integrals in Equation (12). The first

integral can be written∫
61

n1φ11

(
∂φ11

∂x
+ 1

2|∇φ11|2
)

ds

=
∫ 2π

0
a(sinθ(1− a1)+ 3a3 sin 3θ)

×φ11

[
∂φ11

∂x
+ 1

2

((
∂φ11

∂x

)2

+
(
∂φ11

∂y

)2
)]

dθ, (33)

where

φ11 = a[(1− a1) sinθ + a3 sin 3θ]. (34)
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The derivatives ofφ11 are given by Equations (26) and (27) withρ = 1. Equation (33) will
in general be integrated numerically. However, it will be evaluated analytically for elliptical
cross-sections in the next chapter.

We will rewrite the integral overSF by usingρ andθ as integration variables. This means

dS =
∣∣∣∣dzdζ

∣∣∣∣2 ρ dρ dθ. (35)

The integration in theρ-direction will in general be done numerically fromρ = 1 to a large
numberρL and analytically fromρ = ρL to∞. We can write∫ ∫

SF

(
∂φ11

∂x

)2

dS =
∫ 2π

0
dθ
∫ ρL

1
dρ ρ

∣∣∣∣ dzdζ

∣∣∣∣2(∂φ11

∂x

)2

+a2π
(a1− 1)2

2ρ2
L

+O
(

1

ρ6
I

)
, (36)

where|dz/dζ |2 and∂φ11/∂x are given by Equations (26) and (25). Further∫ ∫
SF

[
∂φ11

∂x
|∇φ11|2+ 1

2|∇φ11|2|∇φ11|2
]

dS

=
∫ 2π

0
dθ
∫ ρL

1
dρ ρ

∣∣∣∣dzdζ

∣∣∣∣2
[
∂φ11

∂x
+ 1

2

[(
∂φ11

∂x

)2

+
(
∂φ11

∂y

)2
]]

×
[(

∂φ11

∂x

)2

+
(
∂φ11

∂y

)2
]
+O

(
1

ρ6
L

)
, (37)

where|∇φ11|2 is given by Equation (27).
The integral given by Equation (14) can be expressed analytically as∫ ∫

Sr

φa

(
2
∂φ11

∂x
+ |∇φ11|2

)
dS = πa2(b2(a1− 1+ a1a3)− b4a3) (38)

by the use of the Equations (35), (27), (25) and (32) . Further,b2 andb4 are given by Equa-
tions (30) and (28).

To sum up, we have shown how to calculate the force componentF (ψ) given by Equa-
tion (10). This is first split into the two parts given by Equations (12) and (14). Equation (12)
is calculated by (36) and (37). Equation (14) is found by (38).

The force componentFHS given by (9) can be written

FHS = utζI2(ρwAc + a11)− (ρw/g)u2ut

∫
61

n1(x + φ11)

(
1
2(∇φ11)

2+ ∂φ11

∂x

)
ds, (39)

where the last integral can be calculated similarly as Equation (33). A difference is that (39)
involves the factorx + φ11, while (33) has the factorφ11; x can be calculated by (16) with
ρ = 1.

There is in addition a force component given by (8) and the load distribution belowz = 0
given by (6).
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2.2. FORCES ON ELLIPTIC CROSS-SECTIONS

It is possible to express analytically the forces on elliptical cross-sections. Elliptical sections
imply thata3 = 0 in (17). This is consistent with

Ac = 1
4πBD. (40)

Further

a = 1
4(B +D) (41)

and

a1 = (B −D)/(B +D). (42)

It follows from Equation (24) that

a11 = 1
4ρwπD

2. (43)

It is assumed thatB is different from zero in the following analysis. It follows from (30) that
b2 = (1− a1). Equation (38) can then be written∫ ∫

SF

φa

(
2
∂φ11

∂x
+ |∇φ11|2

)
dS = −πa2(1− a1)

2. (44)

Equation (33) can be written∫
61

n1φ11

(
∂φ11

∂x
+ 1

2|∇φ11|2
)

dS

= a2(1− a1)
2
∫ 2π

0

sin2 θ

1+ a2
1 + 2a1 cos 2θ

×[(1− a1) cos 2θ + (1− a1)a1+ 1
2(1− a1)

2]dθ = 0. (45)

Similarly we get in (39) that∫
61

n1(x + φ11)

(
1
2|∇φ11|2+ ∂φ11

∂x

)
dS = 0. (46)

We now study theθ-integration in Equation (36) and find that∫ 2π

0

∣∣∣∣dzdζ

∣∣∣∣2(∂φ11

∂x

)2

dθ

= a2
∫ 2π

0

(cos2 2θ + 2b cos 2θ + b2)

1+ b2+ 2b cos 2θ
· (a1− 1)2

ρ4
dθ = (a1− 1)2

ρ4
πa2.

Hereb = a1/ρ
2. This means that Equation (36) can be written∫ ∫

SF

(
∂φ11

∂x

)2

dS = π

2
(a1− 1)2a2. (47)
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We now study theθ-integration in (37), i.e.∫ 2π

0

∣∣∣∣dzdζ

∣∣∣∣2
[
∂φ11

∂x
+ 1

2

[(
∂φ11

∂x

)2

+
(
∂φ11

∂y

)2
]][(

∂φ11

∂x

)2

+
(
∂φ11

∂y

)2
]

dθ

= a2(1− a1)
3

ρ6

∫ 2π

0

[cos 2θ + b+ 0.5(1− a1)/ρ
2]

1+ b2+ 2b cos 2θ
dθ = a2(1− a1)

4π

ρ4(ρ4− a2
1)
.

By now integrating in theρ-direction it follows∫ ∫
SF

[
∂φ11

∂x
+ 1

2|∇φ11|2
]
|∇φ11|2dS = π(1− a1)

4 a
2

4a3
1

[
log

1+ a1

1− a1
− 2a1

]
(48)

The limit of this expression whena1→ 0 i.e. for a circle, is1
6πa

2.

3. Numerical results

The horizontal force part oscillating with frequency 3ω in regular waves will be studied first.
This force acts in the free surface. Deep water and a vertical cylinder with constant cross-
section are considered. By writing the linear velocity potential for the incident waves as

8I = gA

ω
eKz cos(ωt −Kx),

we obtain

ζ 2
I1utz = 1

4gK
2A3(cosωt − cos 3ωt),

wuzζI1 = 1
4gK

2A3(cosωt − cos 3ωt),

ζI2ut = −1
4gK

2A3(cosωt + cos 3ωt),

u2ut/g = 1
4gK

2A3(cosωt − cos 3ωt).

HereAmeans the incident wave amplitude andK is the wave number.
Equation (8) gives the following third harmonic load

−1
4gK

2A3(a11+ 1
2(ρwAc + a11)) cos 3ωt. (49)

The contribution from (9) or (39) is

−1
4gK

2A3{ρwAc + a11−D1} cos 3ωt, (50)

where

D1 = ρw
∫
61

n1(x + φ11)

(
1
2|∇φ11|2+ ∂φ11

∂x

)
ds. (51)

Equation (10) or Equations (12) and (13) give the force contribution

−1
4gK

2A3(D2+D3)cos 3ωt, (52)
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where

D2 = 3ρw

[∮
61

n1φ11

(
∂φ11

∂x
+ 1

2|∇φ11|2
)

ds

+
∫ ∫

SF

((
∂φ11

∂x

)2

+ ∂φ11

∂x
|∇φ11|2+ 1

2|∇φ11|2|∇φ11|2
)

dS

]
(53)

and

D3 = −2ρw

∫ ∫
SF

φa

(
∂φ11

∂x
+ |∇φ11|2

)
dS. (54)

It is shown in the chapter on Lewis-form technique howDi can be evaluated.
The sumF 3ω cos 3ωt of these force components can be non-dimensionalized as follows:

F 3ω

ρwgK
2D2A3

cos 3ωt. (55)

Equation (55) can according to FNV be written as

−π
2

cos 3ωt (56)

for a circular cross-section. It follows from (40)–(47) that

F 3ω

ρwgK2D2A3
= − π

16

{
6+ 3

2

B

D
+ 3

D2(B +D)
(B −D)3

(
log

(
B

D

)
− 2

B −D
B +D

)}
(57)

for an elliptical cross-section. WhenB → D, the limit of (57) agrees with (56). Equation (57)
is logarithmically singular whenB/D→ 0, i.e. for a flat plate in cross-flow. A potential-flow
solution would then in any case be doubtful. Flow separation from the sharp corners should
be accounted for in the analysis.

Figure 3 shows non-dimensionalized values ofF 3ω as a function ofAc/BD for different
values ofB/D. The minimum values ofA/BD for a realistic cross-section to exist are 0·52,
0·44, 0·29, 0·44 and 0·49 for B/D = 0·25,0·5,1·0,2·0 and 3·0, respectively. Results for
Ac/BD between 0·5 and 1·0 are presented except forB/D = 0·25 where the lowest value
of Ac/BD is 0·55. The results in Figure 3 agree with (57) for an elliptical cross-section. The
results for elliptical cross-sections are shown in Figure 4 as a function ofB/D. Figure 3 shows
that the cross-sectional form clearly influences the magnitude of the force. The highest force
amplitudes shown in Figure 3 forB/D = 1,2 and 3 are when AC/BD = 1, while the highest
values forB/D = 0·25 and 0·5 occur for the smallest examined values ofAc/BD. When
B = D, the minimum force amplitude is not for a circular cross-section, but forAc/BD

between 0·65 and 0·7. What these sections look like can be found from (19) withρ = 1 and
a, a1 anda3 given by (18). The results in Figure 4 show that the lowest amplitude of the force
oscillating with 3ω occur whenB/D is between 0·5 and 0·6 for elliptical cross-sections.

The sign ofF 3ω is negative for all cross-sections. The meaning of this can be related to
the time dependence of the linear horizontal force and the incident wave field. The linear
horizontal force is proportional to cosωt and the linear incident-wave field can be described
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214 O. M. Faltinsen

Figure 3. Horizontal forceF3ω cos 3ωt acting on a vertical cylinder in incident regular waves propagating in
the x-direction on deep water. Cross-section is a Lewis form.K = wave number,A = wave amplitude of
incident waves.D = cross-sectional length in they-direction.B = cross-sectional length in thex-direction.
Ac = cross-sectional area.

asA sin(ωt −Kx). When the linear horizontal force is a maximum,i.e. when there is a wave
node atx = 0 and the wave slope has a negative minimum, the third harmonic force has a
minimum value. When the linear horizontal force has a negative minimum,i.e. when there
is a wave node atx = 0 and the wave slope is a maximum, the third harmonic force has
a maximum value. If we consider the time interval fromωt = 0 to π, thenωt = 0 and
ωt = π correspond to time instances when the linear horizontal force attains its maximum
and negative minimum values, respectively. The third harmonic force has not onlyωt = 0
andωt = π as, respectively, (negative) minimum and maximum values in this time interval.
Whenωt = π/3, the third harmonic force has also a maximum value. This is ahead in time
of a maximum incident linear wave elevation atx = 0. The wave slope is negative atx = 0 at
this time instant. The rate of change with time of the incident linear wave elevation is positive.
Whenωt = 2π/3, the third harmonic force has another negative minimum value. This occurs
after the time instance when the incident wave has a maximum elevation atx = 0. The incident
linear wave slope atx = 0 is positive and the rate of change with time of the incident linear
elevation atx = 0 is negative.
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Ringing loads on a slender vertical cylinder215

Figure 4. Horizontal forceF3ω cos 3ωt acting on a vertical cylinder in incident regular waves propagating in the
x-direction on deep water. Cross-section is elliptical.K = wave number,A = wave amplitude of incident waves.
D = cross-sectional length in they-direction.B = cross-sectional length in thex-direction.Ac = cross-sectional
area.

The horizontal force expression containing the 3ω-effect in irregular longcrested waves
propagating in the positivex-direction can be expressed as

F 3ω
irr = a11wuζI1+ 1

2(ρwAc + a11)ζ
2
I1utz

+(ρwAc + a11)utζI2+ (−D1+D2+D3)u
2ut/g, (58)

where theDi are defined by (51)–(53). By the 3ω-effect we mean that the expression contains
sumfrequency componentsωi +ωj +ωk, whereωi, ωj andωk are three spectral components
of the linear incident wave system.

For an elliptical cross-section Equation (58) can be written as

F 3ω
irr = ρw

π

4
D2wuζI1+ 1

2ρw
π

4
(BD +D2)ζ 2

I1utz + ρw
π

4
(BD +D2)utζI2

+ρw π
4
D2

(
7
2 + 3

D2(B +D)
(B −D)3

(
log

(
B

D

)
− 2

B −D
B +D

))
u2ut/g. (59)

Equations (58) and (59) containζI2. There is a contribution from the second-order incident-
wave potential toζI2 in irregular sea. But, since this gives only a difference frequency effect
(cf. Faltinsen [7 p. 169]), it does not contribute to a 3ω-effect in (58) and (59).

Figure 5 shows nondimensionalized values of(−D1+D2+D3) for different cross-sectional
forms based on Lewis-form technique. The value is always positive. The cross-sectional form
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Figure 5. Horizontal force(−D1+D2+D3)u
2ut/g (see Equation (58)) acting on a vertical cylinder in incident

irregular waves propagating in thex-direction on deep water. Cross-section is a Lewis form.D = cross-sectional
length in they-direction.B = cross-sectional length in thex-direction.Ac = cross-sectional area.

clearly influences the results. Figure 6 contains information about the two-dimensional added
massa11, which is needed in Equation (58).

4. Conclusions

Third harmonic loads on a vertical cylinder in regular or irregular longcrested non-breaking
waves in deep water have been analyzed. The cylinder cross-section has two symmetry axis
and the waves propagate along one of the symmetry axis. The theory is a generalization of
the FNV-method for circular cross-sections. A characteristic wave amplitudeA is of the same
order as a characteristic cross-dimension of the cylinder. This assumption is different from a
conventional perturbation scheme withA as a small parameter. A characteristic wave length
is large relative toa. An essential part of the analysis is a nonlinear scattering potentialψ that
satisfies an inhomogeneous free-surface condition on a horizontal plane that follows the linear
incident wave elevation at the cylinder axis. The forces due toψ are reformulated into simpler
expressions through the use of integral theorems and auxiliary potentials. Details have been
shown for cross-sections that can be described by conformal mapping based on Lewis-form
technique. Completely analytical expressions for the third harmonic loads have been derived
for elliptical cross-sections. The limit of this expressions for a flat plate in cross-flow has been
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Figure 6. Two-dimensional added massa11 for Lewis forms.D = cross-sectional length in they-direction.
B = cross-sectional length in thex-direction.Ac = cross-sectional area.

shown to be logarithmically singular. It was shown that the third harmonic loads are sensitive
to the cross-sectional form.
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