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Abstract. Third harmonic loads on a vertical cylinder in irregular or regular longcrested waves in deep water
are analyzed. Characteristic wave lengths are large relative to the cross-dimensions of the cylinder. Characteristic
wave amplitudes are of the same order as the cylinder cross-dimensions. The method is a generalization of the FNV
method (Faltinsen, Newman and Vinje [1]) for a circular cross-section. Integral theorems and auxiliary potentials
are used to simplify the force expressions. Details are shown for Lewis form sections. Completely analytical
expressions are derived for elliptical cross-sections. It is demonstrated that the third harmonic loads are sensitive
to the cross-sectional form.
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1. Introduction

Ringing is of concern in survival conditions for gravity-based structures (GBS) and tension-
leg platforms (TLP) in deep water. Ringing is caused by extreme waves exciting transient
resonance response of structural modes. The relevant resonance periods are significantly lower
than the peak period, of the wave spectrum. The interesting natural periods for a TLP and
GBS are about one fourth and one thirdZgf respectively. This means that third and fourth
harmonic load terms are needed in the analysis.

A TLP is restrained from oscillating vertically by tethers, which are vertical anchorlines
that are tensioned by the platform buoyancy being larger than the platform. The submerged
part of the platform may consist of four vertical columns penetrating the free surface. Horizon-
tal pontoons connect the columns at the lower end of the column. The draught of the platform
may be around 40 m. The cross-sections of the columns of a TLP are normally circular. The
diameterD may be from 20 to 30 m. The Draugen monotower is an example of a GBS. It
has non-circular cross-sections that vary along the cylinder axis. It is installed c&n2&r
depth. The smallest cross-dimension of the tower is 15 m and close to the free surface. The
ringing analysis has to be performed in an irregular sea. A typical wave period and maximum
wave amplitudeA for survival conditions in the North Sea could be 15 m and 15 s. The wave
numberK for linear harmonic plane waves with period 15 s i81789 nt. It means that
representative values & D andA/D are 035 and 075 with D = 20 m.

Basic studies on ringing loads on a fixed vertical and infinitely long circular cylinder in
deep water incident waves were reported by Faltinsen, Newman and Vinje [1] (FNV) and by
Newman [2]. FNV assumed regular incident waves and Newman considered irregular waves.
Their procedure will be generalized to a monotower with non-circular cross-sections varying
along the cylinder axis. The cross-section has two symmetry axes. The waves are longcrested
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and propagating along one of the symmetry axes. The incident waves are characterized by a
wave amplituded of the same order of magnitude as a characteristic cross-dimensional length

a of the structure. Botla and A are O(g), wheree « 1. The characteristic wave length is
O(1). The presented theory includes load term®gfA®). First, second and third harmonic

load terms are included. The theory can be generalized to other wave headings, cross-sections
without symmetry planes and a multicolumn GBS. The effect of body motion can be included.
Generalization of the method for a TLP needs further study. The effects of junctions between
columns and pontoons, heave forces and roll and pitch moments should be evaluated. Both
wave frequency and slowdrift motions of a TLP need to be included. The present theory gives
fourth-order harmonic terms in roll and pitch moments about an axis close to the mean free
surface. The reason is that the third harmonic loads act in the free surface zone with a center
of action that follows the incident wave elevation in time. But all fourth-order harmonic terms
are not consistently included in the analysis.

Rainey [3] has analysed a similar case that we study. An important difference in the present
analysis is a nonlinear scattering potentlaharising from the free-surface conditions. If we
disregard the effect ofr, then there is a difference in how Rainey and we derive the loads.
Our formulas are derived by direct pressure integration and use of integral theorems. Rainey
uses conservation of momentum and energy in the fluid.

The solution ofyr implies satisfaction of an inhomogeneous free-surface condition, three-
dimensional Laplace equation and a homogeneous body-boundary condition for the normal
derivative ofy. The free-surface condition is satisfied on a horizontal plane following the
linear incident wave elevatiog;; at the cylinder axis. FNV solved this problem by Weber
transform for a circular cylinder. High numerical accuracy is needed if a direct numerical
method is used. This is demonstrated by Zhu [4] for a circular cylinder. The problem of solving
for ¢ is avoided in this paper. Integral theorems are instead used to rewrite the forces due to
Y. This simplifies the analysis. Details are shown for cross-sections that can be described by
Lewis-form technique and conformal mapping. Completely analytical expressions are derived
for elliptical cross-sections. Numerical results are presented and show that the third-harmonic
loads are sensitive to the cross-sectional form.

Malenica and Molin [5] have presented a theory for third-harmonic loads on a vertical
circular cylinder in incident regular waves. It is valid for any wave length relative to the
cylinder radius and based on a conventional perturbation scheme of the free-surface conditions
about the mean water level. Third-order terms are included. They discard the steady second-
order potential and the third-order potential oscillating with the frequenaf the linear
loads. The second-order potential oscillating withéhd the third-order potential oscillating
with 3w are consistently included according to their perturbation analysis.

Since the nonlinear scattering potentjaharies rapidly in the vertical direction over dis-
tances on the scale of the incident wave amplitude, it is not possible in our analysis to use a
conventional perturbation of the free-surface conditions about the mean water level. The free-
surface condition fot) is satisfied on a horizontal plane followigg,. Since the assumptions
in the presented theory and the theory by Malenica and Molin [5] are different, they need not
give the same results. However, Malenica and Molin demonstrated that their results agreed
with FNV for very long wave lengths relative to the cylinder radius. The amplitude of the
third-harmonic loads, but not the phases, agrees reasonably in the wave-length domain of
interest for ringing analysis of a GBS or a TLP.

Experiments have revealed the existence of highly nonlinear local flow phenomena close to
a vertical circular cylinder when the column is being ‘hit’ by a large and steep wave. The wave



Ringing loads on a slender vertical cylinde201

Figure 1. Description of vertical cylinder and coordinate system. Incident linear wave system is illustrated.

length is large relative to the diameter and the wave amplitude is of the order of the cylinder
radius. The nonlinear flow near the column may be characterized as a so called ‘*hydraulic
jump’ starting on the upstream side of the column at the time instant when there is a wave
trough at the column axes. A hydraulic jump is propagating on each side of the column and
collide on the downstream side. The consequence of the collision between the two hydraulic
jumps is a strong vertical jet flow (run-up) which can hit the platform deck. The phenomenon
is most pronounced in regular incident waves. The time between the formation and collision
of the hydraulic jumps is half the wave period. There are no pronounced ‘hydraulic jumps’
propagating upstream in the half-wave period after the collision. The present theory does not
predict phenomena like this. It is of both academic and practical interest to study this problem
in the future.

The paper is organized as follows. The theory for a general cross-section is first presented.
Details are then shown for Lewis forms and elliptic sections. The following chapter on nu-
merical results gives the complete third-harmonic horizontal load expressions for a vertical
cylinder with either a Lewis-form section or an elliptic section.

2. Theory

Cartesian coordinates, y, z) are defined witly = 0 in the mean water level (see Figure 1).
Positivez is upwards. The-y planes and-z planes are symmetry planes for the cross-section
of the monotower. The surface normal vegdioe (n4, n, n3) is positive into the fluid domain.
Incident longcrested irregular or regular waves propagating along-thés are studied. The
characteristic wave amplitudé and structural cross-dimensianare O (¢), wheree <« 1.
The characteristic wave length &(1). The cylinder (monotower) is slender and fixed. The
cross-sectional shape can vary slowly along the cylinder length sahatO (¢). Potential
flow is assumed. The total velocity potential is writtengas- ¢; + ¢s + ¥, whereg; is the
incident wave potentialp, is the first-order scattered potential apdepresents higher-order
nonlinear scattering. The exact boundary-value problem igtkatisfies a three-dimensional
Laplace equation, the body boundary conditigfy9n = 0 and the free-surface condition

G+ 8¢, = —2V¢ -V — IV$-V(V)?%, onz=¢ 1)
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outside the body. Hergis the acceleration of gravity,is the time variable and is the water
elevation. Initial conditions are needed with this formulation of the free-surface condition.
The boundary-value problem will be simplified similar as FNV did. Deep water is assumed.
The linear incident-wave system is described by a superposition of plane harmonic waves. If
harmonic incident waves of frequenayand wave numbek are considered, then the linear
waves are correct to ordek A)? if the dispersion relation is written a/g = K (14+(K A)?),
(cf. Newman [6, Eq. (6.39)]). In irregular sea there is a second-order velocity potential that
oscillates with difference frequencies — w;, for any pair of frequencies; andw; of the
spectral components of the linear wave systefrHaltinsen [7, pp. 169]). It follows then from
the free-surface conditions that the third-order terms in the incident wave system will have no
sum-frequency components + w; + wy, Wherew;, »; andwy are three spectral components
of the linear wave system (Newman [2]).

The functiongs can be found by slender-body theory and matched asymptotic expansions.
We can writepp, = ¢; + ¢ to first order inA as

¢ = dro+ u(x + d11) + uc (337 + ¢o1) + weps + f(z, 1) + O(e?) ()

in the near field of the cylinder. Heggg, u, u,, w are functions ot and timer and the values
of ¢, d¢;/dx, 0%¢p;/0x%, d¢;/9z atx = 0,y = 0. The incident-wave potential has been
expanded in a Taylor series abaut= 0, y = 0 in Equation (2)¢11, ¢1 andg,s satisfy a 2-D
Laplace equation in the cross-sectional plane and the body-boundary conditions.

0¢11 0¢o1 0¢os
— = N1, —— = —xny, /==

- 3
IN N oN 8 3)

HereN = (n1, n2). ¢11 has a 2-D dipole behavior far away from the cylinder and matches
with a far-field 3-D horizontal dipole distribution along the cylinder axis; and part ofp,;
have a far-field source-like behaviofj(z, r) is a consequence of matching with a far-field
3-D source distribution along the cylinder axis. This matching is similar as for a slender body
in infinite fluid (cf. Newman [6], Ch. 7). It follows from the boundary-value problem that
H11 = 0(€), po1 = O(£?), o5 = 0(?), f(z,1) = O(e%). Itis shown later in the text that the
three-dimensional hydrodynamic interaction potenfiét, r) does not cause any horizontal
forces t0O (°).

Further,s is a consequence of that does not satisfy the free-surface condition to correct
order of magnitude. As noted in the introduction, the variatiog @long the cylinder length
is the same order of magnitude as the variationr iand y. So y satisfies a 3-D Laplace
equation. The principal free-surface condition for the nonlinear potential is

Vi + gV, = —2V$ -V — 1V - V(V¢)® onz=¢. (4)

On the right side of Equation (4) the term(u? + w?), is neglected because it is associated
with the nonlinear effects on the incident-wave potential. This term is included in the analysis
of the incident-wave potential. Equation (4) can be approximated. Thewgria of higher
order thangv,. Due to the strong-variations ofy it is essential that the formulation of the
free-surface condition fogr is based on perturbations about the linear incident free-surface
elevations and not aboyt= 0. The free-surface condition is

g% = —2uu, (2%“%11)2)
07 0x
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—lu3 (2 ¢11

9
L o 25(%11)2 + V11 - V(V¢11)2) ®)

onz = ¢;1 (FNV). ¢;1 is the linear incident free-surface elevationcat 0, y = 0. The body-
boundary condition i8yr/on = 0; v will be asymptotically small wheix — ¢;1) = O(e). It
follows from (5) thaty = O (e%).

The horizontal loads per unit length duegtpandg¢, only can be written as

D 0 d
F = prc<z>D—’t‘ + all(Z)a—L; + wi—(uan (@) + 0() (6)

for a totally wetted cross-section. Hefg(z) = cross-sectional area,, = mass density of
the fluid, D/Drt is the substantial derivative and

a11=f¢11n1d5
z

is the two-dimensional added mass for translatory motion inxtdéection; X is the cross-
sectional surface curve. Equation (6) can be found by starting out with Bernoulli's equation
for the pressure, i.e.

0dr 4 2| 09y 0 A
w = —g7— | — 4+ L|v - _ T
p/p &% [ ot +3IVéil at 0x 0x

L (06\*, (88:\*| _0¢i 99 1 (0¢\° .

2 <8x)+(8y> ox 0z 2(32). %
Terms of O(¢?) will be included in the pressure. The last term can then be neglected. The
hydrostatic pressure termp,, gz will be analyzed later. The pressure in the incident waves
—pwldg; /0t + %|V¢,|z] gives the first term in Equation (6). This follows from the diver-
gence theorem applied on the volume inside the body. The second term follows from the

—pwdg,/0t-term and from the fact that,,, ¢o5 and f(z, ) will not contribute to the force.
We can derive the last term by first noting that

1 24 99s \ (995
5 [ m(ve ds—fz(an)<8x)ds-
This is a consequence of
_ | 9 -1 (00\® | (0657
_/Zn.|:8xV¢S—z§<(ax> +(8y> )j|ds
_ a¢s ‘.’1 8¢s 2 a¢s 2 _
L [ ())-o

We have here used the divergence theorem on the two-dimensional volume Vol between the

body surfacex and a circular control surfacg,, far away from the body and the facts that
the surface integral ovet, is zero and that the integrand of the volume integral is zero.
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By using the body boundary conditions we obtain
06, \* | (3¢

1

2"“’/’“((ax> +(ay) .

— b, /8¢58¢s s = —p, /8¢'a¢‘nd s — ) f_n ds.
on 0x ox 0dx ! wt? 3

The first term on the right-hand side cancels the force due to the pressure t&dg; /0x)
(8¢5 /0x) in Equation (7). This means that the pressure terms

28000y {0, AN _,, 09199,
Yox ox 27" ox ay Y9z 9z
in Equation (7) causes the following horizontal force over a segment of dz

0 0
P f f [a—mm)nl _ —(u¢11)n3] ds.
Z 0x

The functiong; is here approximated agp,1. The next steps are to use Stokes theorem and
divide the force with dzThe result is the last term in Equation (6).

The integration of the total pressure force which acts on the cylinder in-theection can
be decomposed into integrations fram= —ocotoz = 0, fromz = 0toz = ¢;1 and from
7z = ¢ toz = g1+ &. Heregp + & is the local wave elevation at the cylinder surface
correct toO (¢2). Itincludes both the effect of the incident waves and the locally scattered free
surface. The contribution by integration of (6) fram=0toz = ¢;1 is

92y
F'en+ %gflat—azmwfxc + ayp) + 0(e%). (8)

The vertical pressure gradient fram= ¢;1 t0 z = ;1 + &, is approximately hydrostatic.

This means the pressupe= —pg(z — ¢) + O (), wheret is the free-surface elevation. The
resulting horizontal force correct 10 (¢°) is

Fys = —%ng/ nigZ ds
P}

0
— it /2 nix + ¢1) [;Iz—uﬂ/g)( (V)2 +%)} ds. ©)

whereX, is T atz = ¢;1; ;2 is the second-order part of the incident wave elevation-atO,
y = 0. It can be expressed as

I DA S
{2 = g[z(u + w®) — {r1w; + d¢2r0/01],

whereg,,q is the second-order incident-wave potentiatat 0,y = 0,z = 0.
The horizontal force due t¢ can be written as

FO — pw/ Yn1dS + py // Voa - Virng dS + O(e°). (10)
SB SB
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The body surfacé extends frony = —oo to z = ¢;1. Solution ofyr involves satisfaction
of 3-D Laplace equation, the free-surface condition (5) and the body-boundary condition
dy/on = 0. This can be done by Weber transform for a circular cross-section (FNV). If
a general cross-section is used, a direct numerical method like a boundary-element method
has to be used. It was demonstrated by Zhu [4] for a circular cross-section that a higher-
order boundary-element method is needed to get sufficient accuracy. However, it is possible
to rewrite Equation (10) so that it is not necessary to solve/foll he resulting expressions
are much simpler to evaluate. Equation (10) can be rewritten by Green’s second identity. We
introduceg, as an auxiliary function together with in Green’s second identity. Singg
satisfiesdgpi1/0n = ny on Sg anddgy1/9z = 0 on S,  satisfiesdy/an = 0 on S and
there are no contributions from the integrals over a control surface far away from the body;, it
follows that

/ Ynyds = / ¢11Y. ds.
Sp SF

HereS is the horizontal plane outside the cross-sectian=at;;. Equation (5) and symme-
try and antisymmetry properties ¢f, and its derivatives give

Pw / l[/tnl ds
Sp

2
N A o

ds ¢11[ —((V¢11) )+ 3Ve11 - V(Vr) i| (11)

Sk

We reformulate the expressions by the generalized Gauss theorem so that lower-order deriva-
tives occur. This gives

2
f f [d)n( ¢“) +8i<<w>n>2>} ds
SF X
2
=—/ nmbn[%ﬂw ) ]ds—// [(%) +%<V¢ )}
¥ SF X
and

/ $11V11 - V(V11)? dS
SF

ad
= —/ ( l% + np ¢11> ¢1l(v¢ll) dS

f/ (8 (4511%) (¢11%>> (V)2 dS.
SF X

We can simplify this equation by using the body-boundary conditiofein the integrand
of the X;-integral and tha,, satisfies the two-dimensional Laplace equation in the integrand
of the Sg-integral. Equation (11) can then be written

Puw / Ynyds
SB
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= (3/g)M2Mz,0w{7§ n1¢11[% + 3|Vl i|
P

/ L[(a‘m) (a;’) “) Vgul® + LV Vol “ (12)

The second part of Equation (10) can be rewritten as

0 0
ff V¢D . anldS = —u f/ Wa— (—(x + ¢11)) ds
Sp Sp s \0s

by partial integration. Her@/ds is the tangential derivative along the body surface in the
cross-sectional plane. We introduce an auxiliary potegtjghat satisfies 2-D Laplace equa-
tion in x andy and the body-boundary condition

0, 0
8?\/ =5 ( 1—(X +¢11)> (13)
By using

(1) Green’s second identity with andg,,

(2) that there are no contributions from the integrals over a control surface far away from the
body,

(3) v satisfiesdyr/on = 0 on Sp,

(4) ¢, satisfies Equation (13),

(5) 9¢,/9z =0o0nSg,

(6) the free-surface condition fgr and

(7) symmetry and antisymmetry properties of the integrand,

we may derive

0
Po f f Vop - Viny dS = —(2/g)u?ius pu f f b0 (zﬂ + [Vl ) (14)
Sp SF

FY can be interpreted as a load moving with= ¢;1(¢) and acting close ta = ¢;1(¢).
Only 2-D potentials are needed in the calculations.

2.1. FORCES EXPRESSED BY.EWIS-FORM TECHNIQUE

It will be shown how to evaluaté,; and its derivatives, the added mass, the auxil-
iary potential¢, and the integrals given in Equations (9), (12) and (14). The derivation is
based on conformal mapping and Lewis-form technique. Since analytical expressions can be
extensively used, a good control of numerical accuracy is achieved.

The cross-section is mapped into a circular section of unit radius (see Figure 2). The
complex coordinates in the physical and mapped plane angl¢, respectively. It is possible
to write (see Figure 2)

z=x+iy=—iré”, (15)

(=E+in=—ipéd®. (16)
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©

Figure 2. Mapping of a cross-section into a circular section with unit radius.

Herei is the complex unit. The mapping based on Lewis-form technigue can be written

ag as
Z(()=“(§+?+E)~ (17)

It can be shown that

1/B D 1//B D\? A, BD
__1(B_ D\ 1/(B D\ _ (A _BD (18)
s 4(2+2)+4\/<2+2> 8(71 22)’
_1(B D
=5\ T ) T

whereB is the cross-sectional dimension in thalirection aty = 0, D is the cross-sectional
length in they-direction atx = 0 and A. is the cross-sectional area. Lewis-form technique
is used in ship hydrodynamics to describe submerged cross-sections of ships. The limitations
of Lewis-form technique are described by von Kerczek and Tuck [8]. It can be shown that
the minimum sectional area coefficiet= A./BD for a realistic ship section to exist is
3n(2—B/D)/32forB/D < 1and 3r(2— D/B)/32for B/D > 1. The maximum sectional-
area coefficient ist(B/D + D/B + 10)/32. The latter value is always larger than 1olf
is less than the minimum value, then re-entry forms occur. i larger than the maximum
value, then sections with double-valued coordinates as a functi@oodtur.

Equation (17) together with Equations (16) and (17) can be written

x:a[psine—i-ﬂsine—a—isinaﬂ,
P P

(19)
y=—a |:,0COSG — ﬂcos@ + a—“;’cosii?} .
P P
The body-boundary condition faf, is
0 0
80u _ =2 (20)

on as
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The stream functionyy4 is introduced. It follows by Cauchy-Riemann’s equations that
Y11= —y = a(l — a1)cosh + aaz Ccos I (22)

on the body boundary. The solution ¢f, in the fluid domain is

cosH cos P
Y11 =a(l—ay) + aaz pe (22)

This ensures that the flow disappears at infinity. The complex potential can then be written

. Ja(Ql—a1)) = aaz
w = ¢11+iYn l[ i7 + (i§)3} (23)
The two-dimensional added mass can be expressed as
an = Pw f ¢11n1 ds
X
2
= pu / [a(l — aq) Sin6 + aaz sin F][a(1 — a1) SiNO + 3aasz sin 3] do
0
= pu(@*(1—a1)® + 3(aas)®). (24)

We need to evaluate the fluid velocities in Equations (9), (12—14). The complex velocity is

dw  9¢11 0P dwdg

dz  ox lay _gd_z’

where
dw a(l—ay)) Saas dz aa; 3aas
— = - d —= - ——).
d (42 ) e T\ T
This means
011 _ —a® [ay — 100329 A -ada
dx >l P p*
dc
3a 3a 9a?
——fcoszv——:(l—Zal)cosEJri:}, (25)
P P P
where
dZ 2 2 af 961% 201 6613 6611613
& = 1+F+F+?COSE—FCOS@— PG cosd;. (26)

Further we can write

(@)Z (a¢11>2 _ a22 {(1—a1)2 | Basl—apcos? 9a§}.

0x ay dz 8

p* p® P8 @7
d
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We find the auxiliary potentiap, by first introducing the stream functiof,. The Cauchy-
Riemann equation and Equation (13) give

0
VY, = nla_(x + ¢11)
s

on the body boundary. We can express this as

[(1—aq + 2a3) Sin D + 3azsin 4]

Ve = 2 2 (28)
[1+4 af + a5 + (2a1 — 6aza,) COS D — 6az COS H ]
by using Equations (19-20), (23) and thaf e= dx? + dy?.
Equation (28) can be written as the Fourier series
Vo = Z b2y, SIN 2mo, (29)
m=1
where
1 2
by, = —/ Y, Sin 2m6 do. (30)
T Jo
The solutiony, can then be written
Ve = i b2n i ame (31)
’ m=1 pZm ’
which means that
1) :—ibﬁcoszme (32)
’ m=1 'Ozm
The solution for a circular cylinder ig, = — cos @/ p?.

It will now be shown how to evaluate the different integrals in Equation (12). The first
integral can be written

0
/ nign (% + %W«MZ) ds
bl X

2
= f a(sind(1 — ay) + 3azsin )
0
X ¢ % + 1' (%)2 + (%)2 do (33)
1 Tox 2 ox dy ’

¢11 = a[(1 — ay) Sin6 + az sin 3. (34)

where
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The derivatives of1; are given by Equations (26) and (27) with= 1. Equation (33) will
in general be integrated numerically. However, it will be evaluated analytically for elliptical
cross-sections in the next chapter.

We will rewrite the integral ove§; by usingp andé as integration variables. This means

dz |2

as=|— dp db. 35
S a| P9 (35)

The integration in the-direction will in general be done numerically from= 1 to a large
numberp; and analytically fronp = p; to co. We can write

[y es = [T [Toslg] (22)

_1)2 1
+a an +o (—6> : (36)
2p7 Py

where|dz/d¢ |? andd¢y1/0x are given by Equations (26) and (25). Further

3
/ /S [ﬂwm L1 |V¢11|2|V¢11|2} ds
2 011 dp11\° dp11\°
[ @[ ool [WH[(W) (5
2 2
x|:<%) +(%)}+0(1), (37)
ax ay pL

where|V¢11|? is given by Equation (27).
The integral given by Equation (14) can be expressed analytically as

f f b0 (zﬂ 1 Vbl ) dS = 7a?(balas — 1+ azas) — baas) (38)

by the use of the Equations (35), (27), (25) and (32) . Furtheandb, are given by Equa-
tions (30) and (28).

To sum up, we have shown how to calculate the force compoRg&htgiven by Equa-
tion (10). This is first split into the two parts given by Equations (12) and (14). Equation (12)
is calculated by (36) and (37). Equation (14) is found by (38).

The force componenty s given by (9) can be written

Frs = u,Cr2(pwAc + a11) — (ow/g)u’u, /
pX]

0
na(x + f1o) (%(vm)z + %) ds, (39)

where the last integral can be calculated similarly as Equation (33). A difference is that (39)
involves the factorx + ¢11, while (33) has the factap,;; x can be calculated by (16) with
p =1
There is in addition a force component given by (8) and the load distribution kete\@
given by (6).
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2.2. FORCES ON ELLIPTIC CROSSSECTIONS

It is possible to express analytically the forces on elliptical cross-sections. Elliptical sections

imply thataz = 0 in (17). This is consistent with

A, = 3nBD.
Further

a=3B+D)
and

=(B—-D)/(B+ D).
It follows from Equation (24) that

1 2
ain = 7Ppu7w D%

(40)

(41)

(42)

(43)

It is assumed tha is different from zero in the following analysis. It follows from (30) that

= (1 — ay). Equation (38) can then be written

// bu (2ﬂ + |Vl ) ds = —7a’(1— a)>.
SF

Equation (33) can be written

0
/ nids (% + %qumz) ds
bl X

21 ) fZ” Sha
=da —d
! l+a1+2a1c0329

x[(1—a1)cos D + (1 —aras + 3(1— ay)?]dd = 0.

Similarly we get in (39) that

f ni(x + ¢11) (2|V¢11| + ¢11) ds =0.
P2}

We now study th@-integration in Equation (36) and find that

fz” (am) "
0 dx

(a1 — 1)?
wa

/2” (co$ 20 + 2bcos D +b2) (a1 — 1)2 & —
=a =
0 1+ b2+ 2bcos?d Fou

Hereb = ay/p?. This means that Equation (36) can be written

// (8¢11> z(al_ 1)202.
SF 2

(44)

(45)

(46)

(47)
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We now study th@-integration in (37), i.e.

2 dd11 311\’ 311\ a1\’ 311\’
[l [ 3y (o) [y () o
_d?(1l—-ap)® /2” [cos2 +b+051—av/p?] , _ a*(L—an’x
- ol 0 1+b2+2bcosD Mt —dd)

By now integrating in the-direction it follows

2
/] [@ o ] Vualds = 7 (L - ap s [Iog o 2a1] (48)
SF

1 1—611

The limit of this expression whes, — 0 i.e. for a circle, is%naz.

3. Numerical results

The horizontal force part oscillating with frequenay B regular waves will be studied first.
This force acts in the free surface. Deep water and a vertical cylinder with constant cross-
section are considered. By writing the linear velocity potential for the incident waves as

A
— 82 K2 cogwr — Kx),
w
we obtain

Chu,. = 2gK?A%(coswt — cos nt),
1 243

wu ¢ = 8 K°A°(coswt — cos Jvt),

Crou, = —2gK2A3(coswt + cos nt),

u?u,/g = 3gK*A%(coswt — cos t).

Here A means the incident wave amplitude akids the wave number.
Equation (8) gives the following third harmonic load

—38K?A%(a11+ 3(puAc + a11)) c0S Bor. (49)

The contribution from (9) or (39) is

—1¢Kk?A%p,A. + a11 — D1} cos 3o, (50)
where
dd11
Di=p, | ni(x+¢) | 51Veoul® + e ds. (51)
pX]

Equation (10) or Equations (12) and (13) give the force contribution

—2¢K?A%(D; + D3)cos o, (52)



Ringing loads on a slender vertical cylinde213

where
0
D2 = 3,011) [% I’l1¢11 (% + %|V¢11|2> ds
2 X
A1 \°> 9
+ / / ((—?1) + 20196, 4 %|v¢11|2|v¢11|2> ds} (53)
Sy X dx
and
0
D3 = _2/011) /f ¢a (% + |V¢ll|2> dS (54)
SF X

It is shown in the chapter on Lewis-form technique hbycan be evaluated.

The sumF3* cos 3vt of these force components can be non-dimensionalized as follows:
F3w
— CO0S 3ot (55)
puwg K2D?A3

Equation (55) can according to FNV be written as
—% COS 3t (56)

for a circular cross-section. It follows from (40)—(47) that

F3 T 3B D?(B + D) B B—D
— = ——164+-——+3———Z(log[ =) -2 57
PwgK2D2A3 16{ T3 T (B — D)3 (OQ(D> B+D>} ®7)

for an elliptical cross-section. Wheh — D, the limit of (57) agrees with (56). Equation (57)
is logarithmically singular whe® /D — 0, i.e. for a flat plate in cross-flow. A potential-flow
solution would then in any case be doubtful. Flow separation from the sharp corners should
be accounted for in the analysis.

Figure 3 shows non-dimensionalized valuesFf as a function ofd./B D for different
values ofB/D. The minimum values ofi/ B D for a realistic cross-section to exist aré&®,
0-44, 029, 044 and 049 for B/D = 0-25,0.5, 1.0, 2.0 and 30, respectively. Results for
A./BD between & and 10 are presented except fB/D = 0-25 where the lowest value
of A./BD is 0.-55. The results in Figure 3 agree with (57) for an elliptical cross-section. The
results for elliptical cross-sections are shown in Figure 4 as a functigy bt Figure 3 shows
that the cross-sectional form clearly influences the magnitude of the force. The highest force
amplitudes shown in Figure 3f&@/D = 1, 2 and 3 are when 4/ BD = 1, while the highest
values forB/D = 0-25 and 05 occur for the smallest examined valuesAy/ BD. When
B = D, the minimum force amplitude is not for a circular cross-section, butAfotB D
between @65 and 07. What these sections look like can be found from (19) witk 1 and
a, a; andas given by (18). The results in Figure 4 show that the lowest amplitude of the force
oscillating with 3» occur whenB /D is between & and 06 for elliptical cross-sections.

The sign of F3 is negative for all cross-sections. The meaning of this can be related to
the time dependence of the linear horizontal force and the incident wave field. The linear
horizontal force is proportional to cag and the linear incident-wave field can be described
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Figure 3. Horizontal force F3¢ cos 3¢ acting on a vertical cylinder in incident regular waves propagating in
the x-direction on deep water. Cross-section is a Lewis fokn= wave numberA = wave amplitude of
incident wavesD = cross-sectional length in thedirection. B = cross-sectional length in thedirection.

A, = cross-sectional area.

asA sin(wt — Kx). When the linear horizontal force is a maximuime, when there is a wave
node atr = 0 and the wave slope has a negative minimum, the third harmonic force has a
minimum value. When the linear horizontal force has a negative minimemyhen there

is a wave node at = 0 and the wave slope is a maximum, the third harmonic force has
a maximum value. If we consider the time interval framm = O to =z, thenwr = 0 and

wt = 7 correspond to time instances when the linear horizontal force attains its maximum
and negative minimum values, respectively. The third harmonic force has notwoniy 0
andwr = 7 as, respectively, (negative) minimum and maximum values in this time interval.
Whenwt = 7/3, the third harmonic force has also a maximum value. This is ahead in time
of a maximum incident linear wave elevationvat= 0. The wave slope is negativexat= 0 at

this time instant. The rate of change with time of the incident linear wave elevation is positive.
Whenwt = 27/3, the third harmonic force has another negative minimum value. This occurs
after the time instance when the incident wave has a maximum elevatioa 8t The incident
linear wave slope at = 0 is positive and the rate of change with time of the incident linear
elevation atv = 0 is negative.
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Figure 4. Horizontal forceF3® cos 3ur acting on a vertical cylinder in incident regular waves propagating in the
x-direction on deep water. Cross-section is elliptigal= wave numberA = wave amplitude of incident waves.

D = cross-sectional length in thedirection. B = cross-sectional length in thedirection.A. = cross-sectional
area.

The horizontal force expression containing the-&fect in irregular longcrested waves
propagating in the positive-direction can be expressed as

FY = apwuli+ 3(pwAc + a1)¢fue,
+(pwAc + a11)u, 512 + (— D1+ D2 + D3)u’u,/g, (58)

where theD; are defined by (51)—(53). By the 3affect we mean that the expression contains
sumfrequency components + o; 4+ wi, Wherew;, »; andwy are three spectral components
of the linear incident wave system.

For an elliptical cross-section Equation (58) can be written as

Fo — o T p2 1o Z(BD + D)2 T (BD + D2
irr — Iow4 wu§,1+ zpw4( + )é‘[lutz+/0w4( + )ut§IZ

m (7 _D*B+D) B B —D\\
+,0wZD (§+3W (|09(5>_ZB+D>>” u/g. (59)

Equations (58) and (59) contain,. There is a contribution from the second-order incident-
wave potential ta;, in irregular sea. But, since this gives only a difference frequency effect
(cf. Faltinsen [7 p. 169]), it does not contribute toa-8ffect in (58) and (59).

Figure 5 shows nondimensionalized values-eD,+ D>+ D3) for different cross-sectional
forms based on Lewis-form technique. The value is always positive. The cross-sectional form
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Figure 5. Horizontal force(—D1 + Do + Dg)uzu,/g (see Equation (58)) acting on a vertical cylinder in incident
irregular waves propagating in thredirection on deep water. Cross-section is a Lewis fabm= cross-sectional
length in they-direction. B = cross-sectional length in thedirection.A. = cross-sectional area.

clearly influences the results. Figure 6 contains information about the two-dimensional added
massa11, Which is needed in Equation (58).

4. Conclusions

Third harmonic loads on a vertical cylinder in regular or irregular longcrested non-breaking
waves in deep water have been analyzed. The cylinder cross-section has two symmetry axis
and the waves propagate along one of the symmetry axis. The theory is a generalization of
the FNV-method for circular cross-sections. A characteristic wave ampliudef the same

order as a characteristic cross-dimension of the cylinder. This assumption is different from a
conventional perturbation scheme withas a small parameter. A characteristic wave length

is large relative ta:. An essential part of the analysis is a nonlinear scattering potentiat
satisfies an inhomogeneous free-surface condition on a horizontal plane that follows the linear
incident wave elevation at the cylinder axis. The forces duk &we reformulated into simpler
expressions through the use of integral theorems and auxiliary potentials. Details have been
shown for cross-sections that can be described by conformal mapping based on Lewis-form
technique. Completely analytical expressions for the third harmonic loads have been derived
for elliptical cross-sections. The limit of this expressions for a flat plate in cross-flow has been
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Figure 6. Two-dimensional added magg4 for Lewis forms. D = cross-sectional length in the-direction.
B = cross-sectional length in thedirection. A, = cross-sectional area.

shown to be logarithmically singular. It was shown that the third harmonic loads are sensitive
to the cross-sectional form.
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